76,035 research outputs found

    Solidification behavior and microstructural evolution of near-eutectic Zn-Al alloys under intensive shear

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical and Materials Transactions A, 40(1), 185 - 195 and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.The effect of intensive shear on the solidification behavior and microstructural evolution of binary Zn-Al alloys is presented at hypoeutectic, eutectic, and hypereutectic compositions. It is found that the intensive shear, applied on the eutectic melt prior to solidification at a temperature above but close the eutectic temperature, can significantly reduce the size of eutectic cells, but the solidified microstructure still remains the lamellar morphology. For applying intensive shear on the melt during solidification, the nucleation occurs at temperatures very close to the equilibrium condition and requires very small undercooling for both the primary solidification and the eutectic solidification. The intensive shear can significantly alter the microstructural morphology. In contrast to the dendritic morphology formed in the conventional solidification, the primary Al-rich phase in hypoeutectic Zn-Al alloy and the primary Zn-rich phase in hypereutectic Zn-Al alloy under intensive shear exhibit fine and spherical particles, respectively. The lamellae morphology of Zn-rich phase and Al-rich phase formed in the conventional eutectic solidification exhibit fine and spherical particles. The increase of intensity of shear promotes the independence of solid Zn-rich particles and Al-rich particles during the eutectic solidification, resulting in the uniform and separate distribution of two solid particles in the matrix. It is speculated that the high intensity of shear can result in the independent nucleation of individual eutectic phase throughout the whole melt, and the separate growth of solid phases in the subsequent solidification

    Building Blocks of Physical States in a Non-Critical 3-Brane on R*S^3

    Full text link
    The physical states in a world-volume model of a non-critical 3-brane are systematically constructed using techniques of four-dimensional conformal field theories on R*S^3 developed recently. Invariant combinations of creation modes under a special conformal transformation provide building blocks of physical states. Any state can be created by acting with such building blocks on a conformally invariant vacuum in an invariant way under the other conformal charges: the Hamiltonian and rotation generators on S^3. We explicitly construct building blocks for scalar, vector and gravitational fields, and classify them as finite types.Comment: 56 page

    Dietary patterns of households in Scotland : Differences by level of deprivation and associations with dietary goals

    Get PDF
    Funding This work was supported by the Scottish Government’s Rural and Environment Science and Analytical Services (RESAS) Division.Peer reviewedPostprin

    Chromospheric evaporation in sympathetic coronal bright points

    Full text link
    {Chromospheric evaporation is a key process in solar flares that has extensively been investigated using the spectroscopic observations. However, direct soft X-ray (SXR) imaging of the process is rare, especially in remote brightenings associated with the primary flares that have recently attracted dramatic attention.} {We intend to find the evidence for chromospheric evaporation and figure out the cause of the process in sympathetic coronal bright points (CBPs), i.e., remote brightenings induced by the primary CBP.} {We utilise the high-cadence and high-resolution SXR observations of CBPs from the X-ray Telescope (XRT) aboard the Hinode spacecraft on 2009 August 23.} {We discover thermal conduction front propagating from the primary CBP, i.e., BP1, to one of the sympathetic CBPs, i.e., BP2 that is 60\arcsec away from BP1. The apparent velocity of the thermal conduction is \sim138 km s1^{-1}. Afterwards, hot plasma flowed upwards into the loop connecting BP1 and BP2 at a speed of \sim76 km s1^{-1}, a clear signature of chromospheric evaporation. Similar upflow was also observed in the loop connecting BP1 and the other sympathetic CBP, i.e., BP3 that is 80\arcsec away from BP1, though less significant than BP2. The apparent velocity of the upflow is \sim47 km s1^{-1}. The thermal conduction front propagating from BP1 to BP3 was not well identified except for the jet-like motion also originating from BP1.} {We propose that the gentle chromospheric evaporation in the sympathetic CBPs were caused by thermal conduction originating from the primary CBP.}Comment: 9 pages, 5 figure

    A super-ductile alloy for the die-casting of aluminium automotive body structural components

    Get PDF
    Super-ductile die-cast aluminium alloys are critical to future light-weighting of automotive body structures. This paper introduces a die-cast aluminium alloy that can satisfy the requirements of these applications. After a review of currently available alloys, the requirement of a die-cast aluminium alloy for automotive body structural parts is proposed and an Al-Mg-Si system is suggested. The effect of the alloying elements, in the composition, has been investigated on the microstructure and mechanical properties, in particular the yield strength, the ultimate tensile strength and elongation. © (2014) Trans Tech Publications, Switzerland.The EPSRC and JLR U

    Blobs in recurring EUV jets

    Full text link
    In this paper, we report our discovery of blobs in the recurrent and homologous jets that occurred at the western edge of NOAA active region 11259 on 2011 July 22. The jets were observed in the seven extreme-ultraviolet (EUV) filters of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). Using the base-difference images of the six filters (94, 131, 171, 211, 193, and 335 {\AA}), we carried out the differential emission measure (DEM) analyses to explore the thermodynamic evolutions of the jets. The jets were accompanied by cool surges observed in the Hα\alpha line center of the ground-based telescope in the Big Bear Solar Observatory. The jets that had lifetimes of 20-30 min recurred at the same place for three times with interval of 40-45 min. Interestingly, each of the jets intermittently experienced several upward eruptions at the speed of 120-450 km s1^{-1}. After reaching the maximum heights, they returned back to the solar surface, showing near-parabolic trajectories. The falling phases were more evident in the low-TT filters than in the high-TT filters, indicating that the jets experienced cooling after the onset of eruptions. We identified bright and compact blobs in the jets during their rising phases. The simultaneous presences of blobs in all the EUV filters were consistent with the broad ranges of the DEM profiles of the blobs (5.5logT7.55.5\le \log T\le7.5), indicating their multi-thermal nature. The median temperatures of the blobs were \sim2.3 MK. The blobs that were \sim3 Mm in diameter had lifetimes of 24-60 s. To our knowledge, this is the first report of blobs in coronal jets. We propose that these blobs are plasmoids created by the magnetic reconnection as a result of tearing-mode instability and ejected out along the jets.Comment: 22 pages, 10 figure

    Counting Form Factors of Twist-Two Operators

    Get PDF
    We present a simple method to count the number of hadronic form factors based on the partial wave formalism and crossing symmetry. In particular, we show that the number of independent nucleon form factors of spin-n, twist-2 operators (the vector current and energy-momentum tensor being special examples) is n+1. These generalized form factors define the generalized (off-forward) parton distributions that have been studied extensively in the recent literature. In proving this result, we also show how the J^{PC} rules for onium states arise in the helicity formalism.Comment: 7 pages, LaTeX (revtex
    corecore